Physics of B_s Mesons and Bottom Baryons at the Tevatron

Manfred Paulini

Carnegie Mellon University

CIPANP 2009 San Diego, CA

May 26 - 31, 2009

Fermilab

Exp. Equipment

Tevatron is running well:

- ~6.5 fb⁻¹ delivered, ~5.5 fb⁻¹ on tape
- ~1-5 fb⁻¹ used for analysis

Motivation

Why study B hadrons?

From
hydrogen atom
to
B hadron
spectroscopy

- Heavy quark hadrons are the hydrogen atom of QCD
 study of B hadron states = study of (non-perturbative) QCD
- Study of CKM mechanism provide precision tests of SM
 Search for physics beyond SM through loop processes

Motivation

Why study B hadrons?

From
hydrogen atom
to
B hadron
spectroscopy

- Heavy quark hadrons are the hydrogen atom of QCD
 study of B hadron states = study of (non-perturbative) QCD
- Study of CKM mechanism provide precision tests of SM
 Search for physics beyond SM through loop processes

$$egin{aligned} egin{aligned} ext{Tevatron:} & m{p}\,ar{m{p}} &
ightarrow m{b}ar{m{b}}m{X} \ ar{ar{B}}^0_S &= |m{b}\,ar{m{d}}
angle, & B^- &= |m{b}\,ar{m{u}}
angle \ ar{m{B}}^0_S &= |m{b}\,ar{m{s}}
angle, & B^-_c &= |m{b}\,ar{m{c}}
angle \end{aligned}$$

(all B hadrons produced)

$$egin{aligned} \Lambda_b^0 &= |oldsymbol{b}\,d\,u
angle, \; \Sigma_b^- &= |oldsymbol{b}\,d\,d
angle \ \Xi_b^- &= |oldsymbol{b}\,d\,s
angle, \; \Omega_b^- &= |oldsymbol{b}\,s\,s
angle \end{aligned}$$

B_s⁰ Meson Physics

Neutral *B_s*⁰ System

 B_s^0 System: 2 flavour eigenstates: $B_s^0=|\bar bs\rangle$ & $\bar B_s^0=|b\bar s\rangle$ Time evolution of states governed by Schrödinger equation:

$$irac{d}{dt}igg(egin{array}{c} B_s^0(t) \ ar{B}_s^0(t) \ \end{array}igg) = \underbrace{igg[igg(egin{array}{c} M_0 & M_{12} \ M_{12} & M_0 \ \end{array}igg) - rac{i}{2}\underbrace{igg(ar{\Gamma}_0 & \Gamma_{12} \ \Gamma_{12} & \Gamma_0 \ \end{bmatrix}}_{ ext{decay matrix}}igg(egin{array}{c} B_s^0(t) \ ar{B}_s^0(t) \ \end{array}igg)$$

Mass eigenstates are admixture of B_s^0 flavour eigenstates:

$$|B_s^H
angle=p|B_s^0
angle-q|ar{B}_s^0
angle \hspace{0.5cm} |B_s^L
angle=p|B_s^0
angle+q|ar{B}_s^0
angle \hspace{0.5cm} rac{q}{p}=rac{V_{tb}^*V_{ts}}{V_{tb}V_{ts}^*}$$

where $\Delta m_s = m_H - m_L \sim 2 |M_{12}|$ Oscillations between $B_s^0 \& \bar{B}_s^0$

$$\Delta\Gamma_s = \Gamma_L - \Gamma_H \sim 2 |\Gamma_{12}| \cos(\phi_s)$$
 Lifetime / width difference

$$\phi_s = arg(-M_{12}/\Gamma_{12})$$
 CP phase

Assume no CP violation ($\phi_s^{SM} \sim 0.004$) => mass eigenstate = CP eigenstate

=> $\Gamma_{L} \sim CP$ even (short lived) & $\Gamma_{H} \sim CP$ odd (long lived)

Experimental observables describing system:

$$m_{H_s} m_L => \Delta m_s$$
, $\Gamma_s = (\Gamma_H + \Gamma_L)/2 = 1/\tau_s$, $\Delta \Gamma_s$, ϕ_s

CP Violation in $B_s^0 \rightarrow J/\psi \phi$

Status of analyses:

- D0: Result with 2.8 fb⁻¹ published in PRL

- CDF: Update to 1.3 fb⁻¹ published result with 2.8 fb⁻¹ for ICHEP'08

• Decay $B_s^0 o J/\psi \, \phi$ (spin-0 -> spin-1 + spin-1) $\frac{1}{2}$ leads to 3 different angular momentum final states:

- L=0 (s-wave), L=2 (d-wave) -> CP even

- L=1 (p-wave)

-> CP odd

• Use decay angular distribution in transversity basis $\vec{\rho} = (\cos \theta, \, \phi, \, \cos \psi)$

to disentangle
CP states
=> mainly
CP even

 $B^0_s o J/\psi \, \phi$

$B_s^0 \rightarrow J/\psi \phi$ Analysis

Results:

• Measurement of lifetime and $\Delta\Gamma$

$$\tau_s$$
=1/ Γ_s =(1.52 ± 0.06 ± 0.01) ps
 $\Delta\Gamma_s$ = (0.19 ± 0.07 ± 0.02) ps⁻¹

$$\tau_s$$
=1/ Γ_s =(1.53 ± 0.04 ± 0.01) ps
 $\Delta\Gamma_s$ = (0.02 ± 0.05 ± 0.01) ps⁻¹

$B_s^0 \rightarrow J/\psi \phi$ Analysis

• With flavor tagging measure time dep. *CP* asym. => determ. β_s Analogy to measurement of CKM angle β in B^0 -> $J/\psi K_S^0$

Expect β_s to be small in SM ($|\beta_s^{SM}| \approx 0.02$) - beyond current reach

=> Current interest: Search for enhanced CP violation through new physics: $2eta_s^{J/\psi\phi}=2eta_s^{\rm SM}-\phi_s^{\rm NP}$

CP Violation in $B_s^0 -> J/\psi \phi$

Current status:

- CDF prelim. (2.8 fb⁻¹) and D0 published (2.8 fb⁻¹) results
- Expressed as confidence regions in β_s - $\Delta\Gamma_s$ plane

- p-value(SM): 0.07 (~1.8σ) Use external constraints on strong phases
- β_s in [0.28, 1.29] at 68% CL p-value(SM): $\underline{0.066}$ (~1.8 σ)

Mild inconsistency with SM (but in same direction)

CP Violation in $B_s^0 -> J/\psi \phi$

ICHEP08: D0 released data with no constraint for avg. with CDF

 β_s in [0.14,0.73] or [0.83,1.42] at 90% CL Combined p-value(SM): 0.031 (~2.2 σ)

CP Violation in $B_s^0 -> J/\psi \phi$

Expect more to come:

- Combination of both CDF & D0 2.8 fb⁻¹ results in progress (TeV working group, unify uncertainties, combined fit)
- D0 update with 5 fb⁻¹
- CDF update with 4 fb⁻¹
 - => Summer 2009 ?

CDF expected sensitivity

Bottom Baryons

$$\Sigma_b$$
 - Ξ_b - Ω_b

Heavy B Baryons

Motivation:

Until 2006 $\Lambda_b^0 = | {\color{red} b} \, {\color{gray} d} \, {\color{gray} u}
angle$ was only established ${\color{gray} B}$ baryon => Search for

$$egin{align} \Sigma_b^- &= |oldsymbol{b} \, d \, d
angle \ \Xi_b^- &= |oldsymbol{b} \, d \, s
angle, \; \Omega_b^- &= |oldsymbol{b} \, s \, s
angle \ egin{align} egin{ali$$

Barvons with Up, Down, Strange and Bottom Quarks and Highest Spin (J = 3/4)

J = 1/2 b Baryons

Example: Σ_b

$$\Sigma_{b}: b\{qq\}, \ q = u,d; \ J^{p} = S_{Q} + S_{qq}$$

$$= 1/2^{+} (\Sigma_{b}^{*})$$

H-atom: spin-spin interaction = hyperfine splitting

Σ_b Baryon

Observed by CDF in 2007:

Use two-track trigger to reconstruct

$$\Sigma_b^{(*)\pm}
ightarrow \Lambda_b^0 \pi^\pm \
ightharpoonup \Lambda_c^+ \pi^- \
ightharpoonup p K^- \pi^+$$

Use large sample of $\sim 3000 \ \Lambda_b$: Observe peaks with $> 5\sigma$ w.r.t. no signal

		Q or $\Delta_{\Sigma_h^*}$	Mass	
State	Yield	(MeV/c^{2^p})	(MeV/c^2)	
Σ_b^+	32^{+13+5}_{-12-3}	$Q_{\Sigma_h^+} = 48.5^{+2.0+0.2}_{-2.2-0.3}$	$5807.8^{+2.0}_{-2.2} \pm 1.7$	
Σ_b^-	59^{+15+9}_{-14-4}	$Q_{\Sigma_b^-} = 55.9 \pm 1.0 \pm 0.2$	$5815.2 \pm 1.0 \pm 1.7$	
Σ_b^{*+}	77^{+17+10}_{-16-6}	$\Delta_{\Sigma_b^*} = 21.2^{+2.0+0.4}_{-1.9-0.3}$	$5829.0^{+1.6+1.7}_{-1.8-1.8}$	
Σ_b^{*-}	69^{+18+16}_{-17-5}		$5836.4 \pm 2.0^{+1.8}_{-1.7}$	

Ξ_b Baryon

Both experiments see significant Ξ_b signals (D0: 5.5 σ , CDF: 7.7 σ)

- CDF: $m(\Xi_b) = (5792.9 \pm 2.5 \pm 1.7) \text{ MeV/c}^2$
- D0: $m(\Xi_b) = (5774 \pm 11 \pm 15) \text{ MeV/c}^2$
- World avg: $M(\Xi_b) = 5792.4 \pm 3.0 \text{ MeV/c}^2$
- D0: Lifetime consistent with expectations

- Observation by D0 in Aug'08 with 1.3 fb⁻¹ data (Builds on previous observation of Ξ_b)
- Observe 17.8 ± 4.9 ± 0.8 events
- Report signal significance: 5.4σ
- $m(\Omega_b) = (6165 \pm 10 \pm 13) \text{ MeV/c}^2$

 $(expect 5.94-6.12 GeV/c^2)$

•
$$\frac{f(b \to \Omega_b^-)B(\Omega_b^- \to J/\psi\Omega^-)}{f(b \to \Xi_b^-)B(\Xi_b^- \to J/\psi\Xi^-)} = 0.80 \pm 0.32_{-0.22}^{+0.14}$$

NEW!

Comprehensive reconstruction of bottom baryons into J/ψ

$$egin{aligned} \Lambda_b^0 &
ightarrow J/\psi \, \Lambda; \quad \Lambda
ightarrow p \pi^-; \quad J/\psi
ightarrow \mu^+ \mu^- \ \Xi_b^- &
ightarrow J/\psi \, \Xi^-; \quad \Xi^-
ightarrow \Lambda \pi^- \ \Omega_b^- &
ightarrow J/\psi \, \Omega^-; \quad \Omega^-
ightarrow \Lambda K^- \end{aligned}$$

• Measurement of B⁰ properties provides cross check:

$$B^0 o J/\psi \, K^{*0} \quad \& \quad B^0 o J/\psi \, K^0_S$$

• Observe structure of 16 signal events in $J/\psi \Omega$ with 5.5 σ signif.

NEW!

- Masses from fit to sample with cτ > 100 μm
- Lifetime from
 yield in bins of cτ
 (no need to model
 background)

 $M(J/\psi\Omega^{-})$

Resonance		Yield	$c au~[\mu{ m m}]$	${ m Mass} \ [{ m MeV}/c^2]$
$B^0(J/\psiK^{*0})$		17250 ± 305	453 ± 6	5279.2 ± 0.2
$B^0(J/\psiK^0_S)$		9424 ± 167	448 ± 7	5280.2 ± 0.2
	Λ_b^0	1934 ± 93	472 ± 17	5620.3 ± 0.5
	$\Xi_{m{b}}^{-}$	66^{+14}_{-9}	468^{+82}_{-74}	5790.9 ± 2.6
	Ω_b^-	16^{+6}_{-4}	340^{+160}_{-120}	6054.4 ± 6.8

0.5

 GeV/c^2

NEW!

- CDF observes Ω_b Baryon
- Relative rate measurement (assume kinematics identical to $\Lambda_{\rm b}$)

$$\frac{\sigma B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) \pm 0.012(syst.)$$

$$\frac{\sigma B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) \pm 0.004(syst.)$$

Summary of mass measurement

$$m(\Xi_b^-) = (5790.9 \pm 2.6 \pm 0.9) \text{ MeV}/c^2$$

$$m(\Omega_b^-) = (6054.4 \pm 6.8 \pm 0.9) \text{ MeV}/c^2$$

Summary of lifetime measurement

$$au(\Xi_b^-) = (1.56^{+0.27}_{-0.25} \pm 0.02) \; ext{ps} \; ext{ <-- First fully rec.}$$

$$\tau(\Omega_b^-) = (1.13^{+0.53}_{-0.40} \pm 0.02) \text{ ps} < -- \text{First }!$$

Comparison with D0 result:

• D0: $m(\Omega_b) = (6165 \pm 10 \pm 13) \text{ MeV/c}^2$

$$=> \Delta m = (111 \pm 12 \pm 14) \text{ MeV/c}^2$$

Significant disagreement!

Measured and Predicted Masses for the $\Xi_{\rm b}^-$ and $\Omega_{\rm b}^-$

GeV/c²

Rate measurements:

$$D0: \frac{f(b \to \Omega_b^-)B(\Omega_b^- \to J/\psi\Omega^-)}{f(b \to \Xi_b^-)B(\Xi_b^- \to J/\psi\Xi^-)} = 0.80 \pm 0.32^{+0.14}_{-0.22}$$

CDF:
$$\frac{\sigma B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma B(\Xi_b^- \to J/\psi \Xi^-)} = 0.27 \pm 0.12 \pm 0.01$$

In agreement?

Conclusions

- Tevatron offers rich heavy flavour program
- Many result from B_s mesons and bottom baryons:
 - CP violation in B_s^0 -> J/ψ ϕ remains interesting
 - Heavy baryons Σ_b , Ξ_b established
 - Discovery of Ω_b => Discrepancy between CDF & D0
- Tevatron accumulates more data until end of Run II
 - => Expect more results from CDF & D0

